Vishay bccomponents, Aluminum capacitors power economic printed wiring, Equivalent resistance (esr) impedance (z) – C&H Technology 053 PEC-PW User Manual

Page 8

Advertising
background image

Document Number: 28346

For technical questions, contact: [email protected]

www.vishay.com

Revision: 14-Aug-08

7

051/053 PEC-PW

Aluminum Capacitors

Power Economic Printed Wiring

Vishay BCcomponents

EQUIVALENT RESISTANCE (ESR)

IMPEDANCE (Z)

T

amb

(°C)

1

10

10

-1

10

2

ESR

0

ESR

- 50

0

50

100

4

1

2

3

4

1

2, 3

Case Ø D x L = 35 x 50, 40 x 40, 40 x 50, 40 x 70 and 40 x 100 mm

ESR

0

= typical at 20 °C, 100 Hz

Curve 1: U

R

= 385 V

Curve 2: U

R

= 200 V

Curve 3: U

R

= 100 V

Curve 4: U

R

= 10 V to 63 V

Fig.14 Typical multiplier of ESR as a function of

ambient temperature.

Fig.15 Typical multiplier ofimpedance as a function of

ambient temperature

T

amb

(°C)

1

10

10

2

Z

0

Z

- 50

0

50

100

2

4

1

2, 3

1

3
4

Z

0

= impedance at 20 °C, 10 kHz

Curve 1: U

R

= 385 V

Curve 2: U

R

= 200 V

Curve 3: U

R

= 100 V

Curve 4: U

R

= 10 V to 63 V

Case Ø D x L = 25 x 30, 25 x 40, 30 x 40, and 35 x 40 mm

10

-1

Fig.16 Typical multiplier of impedance as a

function of ambient temperature.

T

amb

(°C)

1

10

10

2

10

-1

Z

0

Z

- 50

0

50

100

4

1

2

3

4

1

2

3

Curve 1: U

R

= 385 V

Curve 2: U

R

= 200 V

Curve 3: U

R

= 100 V

Curve 4: U

R

= 10 V to 63 V

Z

0

= impedance at 20 °C, 100 Hz

Case Ø D x L = 35 x 50, 40 x 40, 40 x 50, 40 x 70 and 40 x 100 mm

T

amb

(20 °C)

10

6

10

5

10

4

10

3

10

2

10

10

7

f (Hz)

10

2

10

1

Z

(

Ω

)

10

-1

10

-2

1

2

3

4

5

6

7

8

Curve 1: 68 µF, 385 V
Curve 2: 150 µF, 200 V
Curve 3: 680 µF, 100 V
Curve 4: 2200 µF, 63 V
Curve 5: 3300 µF, 40 V
Curve 6: 4700 µF, 25 V
Curve 7: 6800 µF, 16 V
Curve 8: 10 000 µF, 10 V

Case Ø D x L = 25 x 30 mm

Fig.17 Typical impedance as a function of frequency.

Fig.18 Typical impedance as a function

of frequency

T

amb

(20 °C)

10

6

10

5

10

4

10

3

10

2

10

10

7

f (Hz)

10

2

10

1

Z

(

Ω

)

10

-1

10

-2

1

2

3

4
5
6
7
8

Curve 1: 100 µF, 385 V
Curve 2: 220 µF, 200 V
Curve 3: 1000 µF, 100 V
Curve 4: 3300 µF, 63 V
Curve 5: 4700 µF, 40 V
Curve 6: 6800 µF, 25 V
Curve 7: 10 000 µF, 16 V
Curve 8: 15 000 µF, 10 V

Case Ø D x L = 25 x 40 mm

T

amb

(20 °C)

10

6

10

5

10

4

10

3

10

2

10

10

7

f (Hz)

10

2

10

1

Z

(

Ω

)

10

-1

10

-2

1

2

3

4

5

6

7

8

Curve 1: 150 µF, 385 V
Curve 2: 330 µF, 200 V
Curve 3: 1500 µF, 100 V
Curve 4: 4700µF, 63 V
Curve 5: 6800 µF, 40 V
Curve 6: 10 000 µF, 25 V
Curve 7: 15 000 µF, 16 V
Curve 8: 22 000 µF, 10 V

Case Ø D x L = 25 x 40 mm

Fig. 19 Typical impedance as a function of frequency.

Advertising