Communication Concepts AN762 Application Note User Manual

Page 6

Advertising
background image

AR

C

HIVE INF

O

RMA

TI

O

N

PRODUCT TRANSFERRED T

O

M/A

COM

AN762

6

RF Application Reports

ЗЗЗЗ

ЗЗЗЗ

ЗЗЗЗ

ЗЗЗЗ

ЗЗЗЗ

ЗЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗ

ЗЗЗЗЗЗЗ

ЗЗЗЗЗЗЗ

ЗЗЗЗЗЗЗ

ЗЗЗЗЗЗЗ

ЗЗЗЗЗЗЗ

ЗЗЗЗЗЗЗ

Loops can be provided for current probe measurements.

L3

L4

T3

C6

C6

C

C

d

a

c

b

E

E

T2

E

Q2

Q1

E

B

B

L5

C10

C11

R4
R4
R2
R2

R3
R3
R1
R1

L1

L2

Q3

R12

T1

R5

R10

R6

R9

R7

C12

R8

MC1723G

D2

R11

C8

C9

C3

C2

D1

B C E

C4

C1

Board Stand Off’s

Terminal Pins and Feedthroughs

Feedthrough Eyelets

OUTP

GND

NEG POS

Figure 4. Component Layout of tthe Basic Amplifier

The thermal design (determining the size and type of a

heat sink required) can be accomplished with information
in the device data sheet and formulas presented in
references 5 and 6. As an example, with the 180 W unit using
MRF421’s, the Junction-to-Ambient Temperature (R

θJA

) is

calculated first as

P

T

J

– T

A

R

θJA

=

where:

T

J

= Maximum Allowed Junction Temperature

(150

°C).

T

A

= Ambient Temperature (40

°C).

P

= Dissipated Power (180/

η) x (100 – η)

η = Collector Efficiency (%).

If the worst case efficiency at 180 W CW is 55%, then

P = 148 W, and

= 1.49

°C/W (for one device).

(148/2)

150 – 40

R

θJA

=

The Heat Sink-to-Ambient Thermal Resistance, R

θSA

=

R

θJA

– (R

θJC

+ R

θCS

) where: R

θJC

= Device Junction-to-

Case Thermal Resistance, 0.60

°C/W* (from data sheet).

R

θCS

= Thermal Resistance, Case-to-Heat Sink, 0.1

°C/W

(from table in reference 5). Then:

= 0.395

°C/W

2

1.49 – (0.60 + 0.1)

R

θSA

=

* The R

θJC

figure of 0.85

°C/W given for the MRF421 is in error, and

will be corrected in the future prints of the data sheet.

Advertising