Cypress CY7C1354CV25 User Manual

Features, Functional description

Advertising
background image

9-Mbit (256K x 36/512K x 18)

Pipelined SRAM with NoBL™ Architecture

CY7C1354CV25
CY7C1356CV25

Cypress Semiconductor Corporation

198 Champion Court

San Jose

,

CA 95134-1709

408-943-2600

Document #: 38-05537 Rev. *H

Revised September 14, 2006

Features

• Pin-compatible with and functionally equivalent to

ZBT™

• Supports 250-MHz bus operations with zero wait states

• Available speed grades are 250, 200, and 166 MHz

• Internally self-timed output buffer control to eliminate

the need to use asynchronous OE

• Fully registered (inputs and outputs) for pipelined

operation

• Byte Write capability

• Single 2.5V power supply (V

DD

)

• Fast clock-to-output times

— 2.8 ns (for 250-MHz device)

• Clock Enable (CEN) pin to suspend operation

• Synchronous self-timed writes

• Available in lead-free 100-Pin TQFP package, lead-free

and non lead-free 119-Ball BGA package and 165-Ball
FBGA package

• IEEE 1149.1 JTAG-Compatible Boundary Scan

Burst capabilitylinear or interleaved burst order

• “ZZ” Sleep Mode option and Stop Clock option

Functional Description

[1]

The CY7C1354CV25 and CY7C1356CV25 are 2.5V, 256K x
36 and 512K x 18 Synchronous pipelined burst SRAMs with
No Bus Latency™ (NoBL

™) logic, respectively. They are

designed to support unlimited true back-to-back Read/Write
operations with no wait states. The CY7C1354CV25 and
CY7C1356CV25 are equipped with the advanced (NoBL) logic
required to enable consecutive Read/Write operations with
data being transferred on every clock cycle. This feature
dramatically improves the throughput of data in systems that
require frequent Write/Read transitions. The CY7C1354CV25
and CY7C1356CV25 are pin-compatible with and functionally
equivalent to ZBT devices.

All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock. The
clock input is qualified by the Clock Enable (CEN) signal,
which when deasserted suspends operation and extends the
previous clock cycle.

Write operations are controlled by the Byte Write Selects
(BW

a

–BW

d

for CY7C1354CV25 and BW

a

–BW

b

for

CY7C1356CV25) and a Write Enable (WE) input. All writes are
conducted with on-chip synchronous self-timed write circuitry.

Three synchronous Chip Enables (CE

1

, CE

2

, CE

3

) and an

asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. In order to avoid bus
contention, the output drivers are synchronously tri-stated
during the data portion of a write sequence.

Note:

1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.

A0, A1, A

C

MODE

BW

a

BW

b

WE

CE1
CE2
CE3

OE

READ LOGIC

DQs
DQP

a

DQP

b

DQP

c

DQP

d

D

A

T

A

S

T

E

E

R

I

N

G

O

U

T

P

U

T

B

U

F

F

E

R

S

MEMORY

ARRAY

E

E

INPUT

REGISTER 0

ADDRESS

REGISTER 0

WRITE ADDRESS

REGISTER 1

WRITE ADDRESS

REGISTER 2

WRITE REGISTRY

AND DATA COHERENCY

CONTROL LOGIC

BURST
LOGIC

A0'

A1'

D1
D0

Q1
Q0

A0

A1

C

ADV/LD

ADV/LD

E

INPUT

REGISTER 1

S

E

N

S

E

A

M

P

S

E

CLK

CEN

WRITE

DRIVERS

BW

c

BW

d

ZZ

SLEEP

CONTROL

O

U

T

P

U

T

R

E

G

I

S

T

E

R

S

Logic Block Diagram–CY7C1354CV25 (256K x 36)

[+] Feedback

Advertising
This manual is related to the following products: