Sim measurement system, Source independent measurement technique, Applications – Meyer Sound M1D User Manual
Page 22: Sim® measurement system

16
CHAPTER 5
SIM MEASUREMENT SYSTEM
Meyer Sound's SIM audio analyzer is a measurement and
instrumentation system including a selection of hardware
and software options, microphones and accessory cables.
The SIM analyzer is optimized for making audio frequency
measurements of an acoustical system with a resolution
of up to 1/24 of an octave; the high resolution enables you
to apply precise electronic corrections to adjust system
response using frequency and phase (time) domain
information.
Source Independent Measurement Technique
The SIM audio analyzer implements the Meyer Sound
source independent measurement technique, a dual-
channel method that accommodates statistically
unpredictable excitation signals. Any excitation signal
that encompasses the frequency range of interest (even
intermittently) may be used to obtain highly accurate
measurements of acoustical or electronic systems. For
example, concert halls and loudspeaker systems may be
characterized during a musical performance using the
program as the test signal, allowing you to:
View measurement data as amplitude versus time
(impulse response) or amplitude and phase versus
frequency (frequency response)
Utilize a single-channel spectrum mode
View frequency domain data with a logarithmic
frequency axis
Determine and internally compensate for propagation
delays using SIM Delay Finder function
Applications
The main application of the SIM audio analyzer is
loudspeaker system testing and alignment. This includes:
Measuring propagation delay between the subsystems
to set correct polarities and set very precise delay times
Measuring variations in frequency response caused
by the acoustical environment and the placement
and interaction of the loudspeakers to set corrective
equalization
Optimizing subwoofer integration
Optimizing loudspeaker arrays
The SIM audio analyzer can also be used in the following
applications:
Microphone calibration and equalization
Architectural acoustics
Transducer evaluation and correction
Echo detection and analysis
Vibration analysis
Underwater acoustics