HP Prime Graphing Calculator User Manual

Page 482

Advertising
background image

478

Matrices

by the number of elements (e) instead of the number of
rows and columns.

MAKEMAT(expression, rows, columns)

MAKEMAT

(

expression, elements

)

Examples:

MAKEMAT(0,3,3) returns a 3 × 3 zero matrix,
[[0,0,0],[0,0,0],[0,0,0]].

MAKEMAT(√2,2,3) returns the 2 × 3 matrix
[[√2,√2,√2],[√2,√2,√2]].

MAKEMAT(I+J–1,2,3) returns the 2 × 3 matrix

[[1,2,3],[2,3,4]]
Note in the example above that each element is the
sum of the row number and column number minus 1.

MAKEMAT(√2,2) returns the 2-element vector
[√2,√2].

Identity

Identity matrix. Creates a square matrix of dimension
size × size whose diagonal elements are 1 and off-
diagonal elements are zero.

IDENMAT(size)

Random

Given two integers, n and m, and a matrix name, creates
an n x m matrix that contains random integers in the range
−99 through 99 with a uniform distribution and stores it in
the matrix name.

randMat(MatrixName,n,m)

Example:

RANDMAT(M1,2,2) returns a 2x2 matrix with

random integer elements, and stores it in M1.

Jordan

Returns a square nxn matrix with expr on the diagonal, 1
above and 0 everywhere else.

JordanBlock(Expr,n)

Example:

JordanBlock(7,3) returns

7 1 0
0 7 1
0 0 7

Advertising