Installation, Control cable connections – Lincoln Electric FLEXTEC 450 CE User Manual

Page 13

Advertising
background image

A-6

INSTALLATION

FLEXTEC™ 450 CE

A-6

RECOMMENDED ELECTRODE AND
WORK CABLE SIZES FOR ARC WELDING

General Guidelines
Connect the electrode and work cables between the
appropriate output studs of the FLEXTEC™ 450 CE
per the following guidelines:

• Most welding applications run with the electrode

being positive (+). For those applications, connect
the electrode cable between the wire drive feed
plate and the positive (+) output stud on the power
source. Connect a work lead from the negative (-)
power source output stud to the work piece.

• When negative electrode polarity is required, such

as in some Innershield applications, reverse the out-
put connections at the power source (electrode
cable to the negative (-) stud, and work cable to the
positive (+) stud).

The following recommendations apply to all output
polarities and weld modes:

• Select the appropriate size cables per the

“Output Cable Guidelines” (See Table A.1).
Excessive voltage drops caused by undersized
welding cables and poor connections often result in
unsatisfactory welding performance. Always use the
largest welding cables (electrode and work) that are
practical, and be sure all connections are clean and
tight.

Note: Excessive heat in the weld circuit indicates
undersized cables and/or bad connections.

Route all cables directly to the work and wire

feeder, avoid excessive lengths and do not coil
excess cable.
Route the electrode and work cables
in close proximity to one another to minimize the
loop area and therefore the inductance of the weld
circuit.

• Always weld in a direction away from the work

(ground) connection.

CONTROL CABLE CONNECTIONS

General Guidelines
Genuine Lincoln control cables should be used at all
times (except where noted otherwise). Lincoln cables
are specifically designed for the communication and
power needs of the FLEXTEC™ 450 CE. Most are
designed to be connected end to end for ease of
extension. Generally, it is recommended that the total
length not exceed 100 feet (30.5 m). The use of non-
standard cables, especially in lengths greater than 25
feet, can lead to communication problems (system
shutdowns), poor motor acceleration (poor arc start-
ing), and low wire driving force (wire feeding prob-
lems). Always use the shortest length of control cable
possible, and DO NOT coil excess cable.

Regarding cable placement, best results will be
obtained when control cables are routed separate
from the weld cables. This minimizes the possibility of
interference between the high currents flowing
through the weld cables, and the low level signals in
the control cables.

** Tabled values are for operation at ambient temperatures of 104°F(40°C) and below. Applications above 104°F(40°C) may require cables

larger than recommended, or cables rated higher than 167°F(75°C).

OUTPUT CABLE GUIDELINES

CABLE SIZES FOR COMBINED LENGTHS OF ELECTRODE AND WORK CABLES

(RUBBER COVERED COPPER - RATED 167°F or 75°C)**

AMPERES

200
200
250
250
250
250
300
300
350
400
400
500

PERCENT

DUTY

CYCLE

60

100

30
40
60

100

60

100

40
60

100

60

0 to 50Ft.
(0 to15m)

2
2
3
2
1
1
1

2/0
1/0
2/0
3/0
2/0

50 to 100Ft.

(15 to 30m)

2
2
3
2
1
1
1

2/0
1/0
2/0
3/0
2/0

100 to 150 Ft.

(30 to 46m)

2
2
2
1
1
1
1

2/0
2/0
2/0
3/0
3/0

150 to 200 Ft.

(46 to 61m)

1
1
1
1
1
1

1/0
2/0
2/0
3/0
3/0
3/0

200 to 250 Ft.

(61 to 76m)

1/0
1/0
1/0
1/0
1/0
1/0
2/0
3/0
3/0
4/0
4/0
4/0

TABLE A.1

Advertising