X75 aluminium flap valve pump design level 7, Service and operating manual – Blagdon Pump X75 Aluminium User Manual

Page 6

Advertising
background image

x75afvmdl7sm-rev0411

Page 4

PRINCIPLE OF PUMP OPERATION

This flap swing check valve pump is powered by compressed air and is a 1:1 pressure

ratio design. It alternately pressurizes the inner side of one diaphragm chamber, while

simultaneously exhausting the other inner chamber. This causes the diaphragms, which

are connected by a common rod, to move endwise. Air pressure is applied over the

entire surface of the diaphragm, while liquid is discharged from the opposite side. The

diaphragm operates under a balanced condition during the discharge stroke, which

allows the unit to be operated at discharge heads over 200 feet (61 meters) of water

head.

Since the diaphragms are connected by a common rod, secured by plates to the

center of the diaphragms, one diaphragm performs the discharge stroke, while the other

is pulled to perform the suction stroke in the opposite chamber.

For maximum diaphragm life, keep the pump as close to the liquid being pumped as

possible. Positive suction head in excess of 10 feet of liquid (3.048 meters) may require

a back pressure regulating device. This will maximize diaphragm life.

Alternate pressuring and exhausting of the diaphragm chamber is performed by

means of an externally mounted, pilot operated, four-way spool type air distribution

valve. When the spool shifts to one end of the valve body, inlet air pressure is applied to

one diaphragm chamber and the other diaphragm chamber exhausts. When the spool

shifts to the opposite end of the valve body, the porting of chambers is reversed. The air

distribution valve spool is moved by an internal pilot valve which alternately pressurizes

one side of the air distribution valve spool, while exhausting the other side. The pilot

valve is shifted at each end of the diaphragm stroke by the diaphragm plate coming in

contact with the end of the pilot valve spool. This pushes it into position for shifting of

the air distribution valve.

The chambers are manifolded together with a suction and discharge check valve for

each chamber, maintaining flow in one direction through the pump.

INSTALLATION & START-UP

Locate the pump as close to the product being pumped as possible, keeping suction

line length and number of fittings to a minimum. Do not reduce line size.

For installations of rigid piping, short flexible sections of hose should be installed

between pump and piping. This reduces vibration and strain to the piping system. A

pulsation dampener is recommended to further reduce pulsation in flow.

This pump was tested at the factory prior to shipment and is ready for operation. It is

completely self-priming from a dry start for suction lifts of 20 feet (6.096 meters) or less.

For suction lifts exceeding 20 feet of liquid, fill the chambers with liquid prior to priming.

AIR SUPPLY

Air supply pressures cannot exceed 125 psi (8.61 bar). Connect the pump air inlet

to an air supply of sufficient capacity and pressure required for desired performance.

When the air line is solid piping, use a short length of flexible hose (not less than 3/4"

(19mm) in diameter) between pump and piping to eliminate strain to pipes.

AIR INLET & PRIMING

For start-up, open an air valve approximately 1/2" to 3/4" turn. After the unit primes,

an air valve can be opened to increase flow as desired. If opening the valve increases

cycling rate, but does not increase flow rate, cavitation has occurred, and the valve

should be closed slightly.

For the most efficient use of compressed air and the longest diaphragm life, throttle

the air inlet to the lowest cycling rate that does not reduce flow.

SERVICE AND OPERATING MANUAL

II 2GD T5

See page 17 for

ATEX ratings

X75 Aluminium Flap Valve Pump

Design Level 7

Advertising
This manual is related to the following products: