Deltype, Delvar, Desolve() – Texas Instruments TITANIUM TI-89 User Manual

Page 808: 808 appendix a: functions and instructions

Advertising
background image

808

Appendix A: Functions and Instructions

DelType

DelType

var_type

Deletes all unlocked variables of the type
specified by

var_type

.

Note: Possible values for

var_type

are:

ASM, DATA, EXPR, FUNC, GDB, LIST, MAT, PIC,
PRGM, STR, TEXT, AppVar_type_name, All.

Deltype “LIST” ¸ Done

DelVar

CATALOG

DelVar

var1

[,

var2

] [,

var3

] ...

Deletes the specified variables from memory.

2! a

¸

2

(a+2)^2

¸

16

DelVar a

¸

Done

(a+2)^2

¸

(a

+

2)ñ

deSolve()

MATH/Calculus menu

deSolve(

1stOr2ndOrderOde

,

independentVar

,

dependentVar

)

a general solution

Returns an equation that explicitly or implicitly
specifies a general solution to the 1st- or 2nd-
order ordinary differential equation (ODE). In the
ODE:

Use a prime symbol ( '

, press 2

È

) to

denote the 1st derivative of the dependent
variable with respect to the independent
variable.

Use two prime symbols to denote the

corresponding second derivative.

The ' symbol is used for derivatives within

deSolve()

only. In other cases, use

d

( )

.

The general solution of a 1st-order equation
contains an arbitrary constant of the form

@k

,

where

k

is an integer suffix from 1 through 255.

The suffix resets to 1 when you use

ClrHome

or

ƒ

8: Clear Home

. The solution of a 2nd-order

equation contains two such constants.

Note: To type a prime symbol (

'

), press

2

È.

deSolve(y''+2y'+y=x^2,x,y)¸
y=(

@

1шx+

@

2)ш

e

ë

x

+xñì4øx+6

right(ans(1))!temp ¸

(

@

1шx+

@

2)ш

e

ë

x

+xñì4øx+6

d

(temp,x,2)+2ù

d

(temp,x)+tempìx^2

¸

0

DelVar temp ¸ Done

Apply

solve()

to an implicit solution if you want

to try to convert it to one or more equivalent
explicit solutions.

deSolve(y'=(cos(y))^2ùx,x,y) ¸

tan(y)=

2

+@3

When comparing your results with textbook or
manual solutions, be aware that different
methods introduce arbitrary constants at different
points in the calculation, which may produce
different general solutions.

solve(ans(1),y) ¸

y=tanê

(

2

2 @ 3

2

x

+ i

)

+@n1øp

ans(1)|@3=cì1 and @n1=0 ¸

y=tanê

(

xxxxс +2

+2

+2

+2ш((((ccccì 1111))))

2222

)

deSolve(

1stOrderOde

and

initialCondition

,

independentVar

,

dependentVar

)

a particular solution

Returns a particular solution that satisfies

1stOrderOde

and

initialCondition

. This is usually

easier than determining a general solution,
substituting initial values, solving for the arbitrary
constant, and then substituting that value into

sin(y)=(yù

e

^(x)+cos(y))y'!ode ¸

sin(y)=(

e

x

ø

y+cos(y))øy'

deSolve(ode and y(0)=0,x,y)!soln
¸

ë

(2øsin(y)+yс)

2

====л((((

e

xxxx

м

1)

1)

1)

1)ш

e

ë

xxxx

ø

sin(y)

sin(y)

sin(y)

sin(y)

Advertising