Important – Yokogawa EJX115A User Manual

Page 29

Advertising
background image

<5. Parameter Setting>

5-9

IM 01C25T04-01EN

Table 5.6

Flow Parameter of Example

T0503.ai

C
ε
β
d
D
ρb
/4
Nc

Symbol

0.6043
0.984
0.6
0.03162 m
0.0527 m
1.250380 kg/m

3

0.7853982
31.62278

Value

Discharge coefficient Orifice Corner Taps [ISO5167-1 1991] ReD 1×10

6

Expansion factor β=0.6, ∆ρ=50,000 Pa, SP=1,000,000 Pa abs, κ=1.399502
Diameter ratio
Bore of orifice
Pipe diameter
Base Density on Tb, SPb Condition (NITROGEN 101,325 Pa abs 273.15 K)

Unit convert factor when DP unit is kPa kPa/Pa = 1000Pa / 1Pa =31.62278

Description

Example 3: Calculation of Qm

∆p = 50kPa,
Qm(kg/s) = Kfactor × ∆p

= 0.02503 × 50

= 0.1770 (kg/s)

Method 2. Calculating the Kfactor from differential pressure and flow rate in normal condition
(1) The flow rate and the differential pressure are calculated using the unit set to the transmitter.
(2) Calculation of the Kfactor

Calculate the Kfactor by using the flow rate and the differential pressure.

Kfactor can be calculated from equation shown in below.

Kfactor = [Qm / (∆p)] / [(ScaleOut_U − ScaleOut_L) + ScaleOut_L]

(3) Enter kfactor as shown in beginning of this section.

IMPORTANT

If either the setting of flow unit or differential

pressure unit is changed, Kfactor must be

recalculated.

Example: Kfactor Calculation

Table 5.7

Flow Condition Example

Symbol

Value

Description

Qm

0.3795 kg/s

Flow rate in normal condition

Δp

50 kPa

Differential pressure

ScaleOut_U

100 kPa

Upper valur of ScaleOut

ScaleOut_L

0 kPa

Lower value of ScaleOut

Kfactor = [Qm / (∆p)] / [(ScaleOut_U − ScaleOut_L) + ScaleOut_L]

= (0.3795 / 50) / [(100 − 0) + 0]

= 0.005367

Advertising