3 kpa δp, 15 kpa δp, 0,5 kpa δp – Infloor Brass Manifold User Manual

Page 5: 0,03 kpa, 0,01 kpa δp, 0,007 kpa using the formula, We can add all the calculated terms to obtain: δp

Advertising
background image

20

1000

100

100

G (l/h)

ΔP (mm w.g.)

200

50

500

25

30

35

40

45

50

60

70

80

90

120

140

160

180

200

900

800
700
600

60

70

80

90

120

140

160

180

250

300

350

400

450

10

1

2

0,5

5

9

8
7
6

0,6

0,7

0,8

0,9

1,2

1,4

1,6

1,8

2,5

3

3,5

4

4,5

ΔP (kPa)

Micrometric balancing valve fully open

Shut-off valve

Kv

1,15

2,87

Kv

0,01

115

287

250

300

350

400

450

500

10

20

12

14

16

18

25

30

35

40

45

0,1

0,2

0,12

0,14

0,16

0,18

0,25

0,3

0,35

0,4

0,45

Flow manifold 3–7 outlets

Flow manifold 8–13 outlets

Return manifold 3–7 outlets

Return manifold 8–13 outlets

Ball valve

Kv

24*

17*

33,5*

23,5*

47,5

Kv

0,01

2400*

1700*

3350*

2350*

4750

1000

100

G (l/h)

ΔP (mm w.g.)

200

50

500

900

800
700
600

60

70

80

90

120

140

160

180

250

300

350

400

450

ΔP (kPa)

500

10

20

12

14

16

18

25

30

35

40

45

10

1

2

0,5

5

9

8
7
6

0,6

0,7

0,8

0,9

1,2

1,4

1,6

1,8

2,5

3

3,5

4

4,5

0,1

0,2

0,12

0,14

0,16

0,18

0,25

0,3

0,35

0,4

0,45

1000

600

700

800

900

1200

1400

1600

1800

2000

2500

3000

3500

4000

* Average value

Example of how to calculate the total pressure loss
Suppose we need to calculate the pressure loss of a manifold with three circuits with the following characteristics:

Total manifold flow: 400 l/h

The flow and pressure loss characteristics of the three piping loops are as follows:

Circuit 1

Circuit 2

Circuit 3

ΔP1= 10 kPa

ΔP2= 15 kPa

ΔP3= 7 kPa

(1.2)

G1= 120 l/h

G2= 200 l/h

G3= 80 l/h

Each segment of the formula

(1.1)

, is calculated using the following relationship:

ΔP=G

2

/Kv

0,01

2

· G= flow in l/h
· ΔP = pressure loss in kPa (1 kPa =100 mm w.g.)
· Kv

0,01

= flow in l/h through the device in question, with a pressure loss of 1 kPa

Note that the ΔP

Tot

must be calculated taking into account the circuit with the greatest pressure losses distributed along the entire piping loop of

the panel.
The circuit in question in our example is circuit 2.

Thus:

ΔP

MV

= 200

2

/115

2

= 3 kPa

ΔP

Loop

= 15 kPa

ΔP

SV

= 200

2

/287

2

= 0,5 kPa

ΔP

FM

= 400

2

/2400

2

= 0,03 kPa

}

Values obtained disregarding variations due to flow rate delivered to each branch circuit

ΔP

RM

= 400

2

/3350

2

= 0,01 kPa

ΔP

BV

= 400

2

/4750

2

= 0,007 kPa

Using the formula

(1.1)

we can add all the calculated terms to obtain:

ΔP

Tot

= 3 +15 + 0,5 + 0,03 + 0,01 + 0,0071 ≈ 18,5 kPa

Note:
We can ignore the three terms for the pressure losses associated with the ball valves and manifolds because their values are so low. Generally
speaking, the total pressure loss is fairly close to the pressure loss of the branched circuit of the panel.

- Kv = flow in m

3

/h for a pressure loss of 1 bar

- Kv

0,01

= flow in l/h for a pressure loss of 1 kPa

Advertising