Tunnel ports, Routed ports – Dell POWEREDGE M1000E User Manual

Page 332

Advertising
background image

11-4

Cisco Catalyst Blade Switch 3130 and 3032 for Dell Software Configuration Guide

OL-13270-03

Chapter 11 Configuring Interface Characteristics

Understanding Interface Types

traffic is forwarded to and from the trunk port for that VLAN. If VTP learns of a new, enabled VLAN
that is not in the allowed list for a trunk port, the port does not become a member of the VLAN, and no
traffic for the VLAN is forwarded to or from the port.

For more information about trunk ports, see

Chapter 13, “Configuring VLANs.”

Tunnel Ports

Tunnel ports are used in IEEE 802.1Q tunneling to segregate the traffic of customers in a
service-provider network from other customers who are using the same VLAN number. You configure
an asymmetric link from a tunnel port on a service-provider edge switch to an IEEE 802.1Q trunk port
on the customer switch. Packets entering the tunnel port on the edge switch, already
IEEE 802.1Q-tagged with the customer VLANs, are encapsulated with another layer of an IEEE 802.1Q
tag (called the metro tag), containing a VLAN ID unique in the service-provider network, for each
customer. The double-tagged packets go through the service-provider network keeping the original
customer VLANs separate from those of other customers. At the outbound interface, also a tunnel port,
the metro tag is removed, and the original VLAN numbers from the customer network are retrieved.

Tunnel ports cannot be trunk ports or access ports and must belong to a VLAN unique to each customer.

For more information about tunnel ports, see

Chapter 17, “Configuring IEEE 802.1Q and Layer 2

Protocol Tunneling.”

Routed Ports

A routed port is a physical port that acts like a port on a router; it does not have to be connected to a
router. A routed port is not associated with a particular VLAN, as is an access port. A routed port
behaves like a regular router interface, except that it does not support VLAN subinterfaces. Routed ports
can be configured with a Layer 3 routing protocol. A routed port is a Layer 3 interface only and does not
support Layer 2 protocols, such as DTP and STP.

Configure routed ports by putting the interface into Layer 3 mode with the no switchport interface
configuration command. Then assign an IP address to the port, enable routing, and assign routing
protocol characteristics by using the ip routing and router protocol global configuration commands.

Note

Entering a no switchport interface configuration command shuts down the interface and then re-enables
it, which might generate messages on the device to which the interface is connected. When you put an
interface that is in Layer 2 mode into Layer 3 mode, the previous configuration information related to
the affected interface might be lost.

The number of routed ports that you can configure is not limited by software. However, the
interrelationship between this number and the number of other features being configured might impact
CPU performance because of hardware limitations. See the

“Configuring Layer 3 Interfaces” section on

page 11-24

for information about what happens when hardware resource limitations are reached.

For more information about IP unicast and multicast routing and routing protocols, see

Chapter 38,

“Configuring IP Unicast Routing”

and

Chapter 44, “Configuring IP Multicast Routing.”

Note

The IP base feature set supports static routing and the Routing Information Protocol (RIP). For full
Layer 3 routing or for fallback bridging, you must enable the IP services feature set on the standalone
switch, or the stack master.

Advertising