Low-frequency mode generator – Altera Stratix GX Transceiver User Manual

Page 208

Advertising
background image

8–4

Altera Corporation

Stratix GX Transceiver User Guide

January 2005

Pattern Generator

deterministic data dependant components are masked out. However, for
more accurate measurements, use a TIA or some type of jitter separation
software to break down the random and deterministic components.

High-frequency mode is also useful when trying to characterize the
high-frequency losses in the time domain. The delta amplitude difference
between the high-frequency pattern and the low-frequency pattern can
give you a first-order approximation of the high-frequency losses due to
the skin effect and dielectric losses. This method is useful only for a
first-order approximation; use extractions of RLGC values with 2D and
3D field solvers to determine more accurate loss coefficients.

High-frequency mode is enabled when option 2 is selected in the
Quartus II software under what self test mode do you want to use?
Enable the 8b/10b encoder to generate the high-frequency pattern. If it is
disabled, an 8'b10110101 character is sent instead of the
10'b1010101010

character.

Low-Frequency Mode Generator

In low-frequency mode, the BIST generator transmits a K28.7 -/+
character (8'b11111100) into the 8b/10b encoder to generate a
10'b0011111000

or 10'b1100000111 low-frequency character. The

low-frequency data transition toggles at one-tenth the data rate of the
high-frequency pattern.

Like the high-frequency pattern, the low-frequency pattern is DC
balanced with the number of ones equal to the number of zeros. This fact
is important when trying to perform a first order random jitter
measurement. You can measure this jitter using an oscilloscope with a
histogram defined at the zero crossing point. This method is crude, but
still yields a first-order estimated value, because the majority of the
deterministic data-dependant components are masked out. However, for
more accurate measurements, use a TIA or some type of jitter separation
software to break down the random and deterministic components.

Because the data transitions in a slower frequency, the signal is less prone
to high-frequency losses. As a result, the signal is able to rise to a higher
amplitude than the high-frequency components. Therefore, the delta
between the two measurements yields a first order approximation of the
high-frequency losses in the time domain. Once again, this approach is
useful only for a first-order approximation. Use extractions of RLGC
values with 2D and 3D field solvers to determine more accurate loss
coefficients.

Advertising